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Abstract: High spatiotemporal resolution climate data are essential for climate-related impact studies.

The Weather Research and Forecasting (WRF) model is widely used to downscale climate data

for different regions with regional-specific physics configurations. This study aimed to identify

robust configurations of the WRF model, especially cumulus parameterization schemes, for different

climatic zones of Sudan. We focused on wet season (June–September) rainfall and dry season

(November–February) temperature, which are determinants of summer crop and irrigated wheat

yields, respectively. Downscaling experiments were carried out to compare the following schemes:

Betts–Miller–Janjic (BMJ), improved Kain–Fritch (KFT), modified Tiedtke (TDK), and Grell–Freitas

(GF). Results revealed that the BMJ performed better for wet season rainfall in the hyper-arid and

arid zones; KFT performed better for rainfall in July and August in the semi-arid zone where most

summer crops are cultivated. For dry season temperature, the BMJ and TDK outperformed the

other schemes in all three zones, except that the GF performed best for the minimum temperature in

December and January in the arid zone, where irrigated wheat is produced, and in the semi-arid zone.

Specific parameterization schemes therefore need to be selected for specific seasons and climatic

zones of Sudan.

Keywords: downscaling; dryland; model; rainfall; temperature

1. Introduction

High spatial resolution climate data are required for local-scale impact assessments of
climate variability and changes of ecosystem services. The outputs of general circulation
models (GCMs) are not sufficient for such local-scale studies, and therefore regional climate
models (RCMs), which incorporate detailed specifications of the earth’s surface such as
land use and water bodies, have been broadly applied to satisfy this requirement. RCMs
outperform GCMs in detailed simulation of mesoscale processes, e.g., convective rainfall
processes [1–3]. Weather Research and Forecasting (WRF) is a well-known RCM used
for many purposes such as operational forecasting and dynamical downscaling. As local
climates are regulated by global circulations and further constrained by land surface
conditions, the WRF model provides multiple physics options to satisfy region-dependent
climate conditions. Numerous studies have been conducted with the aim of identifying
robust configurations of physical processes for specific scales and geographical locations
and their applications [4–9].
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Previous studies have tested various physical options of the WRF model to identify
the most suitable configurations for specific regions. For example, over the Middle East and
North Africa (MENA), the climates of which are hot and dry, rainfall is sensitive mainly
to cumulus parameterization physics such as the Kain–Fritsch scheme (KF) [10], the Grell–
Devenyi ensemble scheme (GD) [11] and the Betts–Miller–Janjic scheme (BMJ) [12], whereas
microphysics such as the Goddard scheme (GODDARD) [13] and the WRF Single-moment
6-class scheme (WSM6) [14] significantly affect temperature deviations [15]. However, the
model outputs are less sensitive to planetary boundary layer physics, such as the Mellor–
Yamada–Janjic scheme (MYJ) [12] and the Yonsei University scheme (YSU) [16], than to
cumulus parameterization physics and microphysics [15]. In the case of shortwave and
longwave radiation physics, the Community Atmosphere Model (CAM) [17] and Rapid
Radiative Transfer Model for GCMs (RRTMG) [18] capture well the inter-annual variability
and warming trends of temperature, but they are season- and location-dependent over
MENA [19]. A previous study [20] has further indicated that temperature is sensitive to
land surface physics such as the Noah land surface model (NOAH) [21], NOAH with
multi-parameterization (NOAHMP) [22], Community Land Model (CLM) [23], and the
Rapid Update Cycle (RUC) [24]. The following configuration of the WRF model has been
recommended for MENA: CAM or RRTMG, NOAH, YSU, the WRF Single-moment 5-class
scheme for microphysics (WSM5) or WSM6, and KF [15,19,20].

The sensitivity of the WRF model outputs to the physics options has been reported
for the neighboring regions of MENA, i.e., the Nile River basin and the Eastern Nile basin.
The configuration recommended for the Nile River basin is a combination of the Dudhia
scheme for shortwave radiation (DUDHIA) [25] and the Rapid Radiative Transfer Model
for longwave radiation (RRTM) [26], NOAH, MYJ, the WRF Single-moment 3-class scheme
for microphysics (WSM3) [27], and KF [28]. For the Eastern Nile basin, the climates of
which are wetter than those of MENA, a set of CAM, NOAH, MYJ, WSM6, and BMJ is
recommended [29]. In the case of rainfall, the WRF model outputs are very sensitive
to the cumulus parameterization option [15,28–32]. There are two types of cumulus pa-
rameterization options: adjustment and mass-flux. The BMJ is a typical adjustment type,
whereas the GD and KF are examples of the widely used mass-flux type. The WRF model
with the adjustment type does not simulate detailed processes of cumulus convection.
Instead, it uses a simplified process that involves adjusting lapse rates of temperature and
humidity. Compared with the adjustment type, the mass-flux type is complex because
it involves cloud modelling for cumulus convective processes. The model performance
with this type depends mainly on the reproduction of entrainment/detrainment and/or
updrafts/downdrafts. The performance of WRF downscaling experiments has been re-
ported from different regions of Africa. For example, the BMJ outperforms the GD in South
Africa [30], where it reproduces the intensity of summer rainfall anomalies, and the KF
and GD over Central and Western Africa [31]. Over East Africa, model simulation with the
KT incorporating a moisture-advection-based trigger function (KFT) as well as the KT and
GD [33] outperforms model simulation with the BMJ [32].

In Northeast Africa, drought and extremely high temperature events often occur and
negatively affect crop production. Sudan is one of the countries vulnerable to such climate
risks: droughts impact summer crops such as sorghum and pearl millet during the wet
season from June to September in the relatively wet climate of the southern part [34], and
high temperatures affect irrigated wheat during the dry season from November to February
in the dry climate of the central and northern parts [35]. Rainfall is a critical climate element
in the wet season because summer crops are cultivated under rainfed conditions. Lack of
rain results in crop failure, hence the economic loss. In the dry season, wheat is produced
under irrigated conditions due to no rain falling in the cultivated areas, but the crop is
often exposed to heat stress. Previous studies have shown that yields of the summer crops
are positively associated with rainfall in the wet season [34], and irrigated wheat yield is
negatively associated with temperature in the dry season [35]. The main objective of this
study was therefore to identify a robust configuration of the WRF model for generating



Atmosphere 2022, 13, 572 3 of 16

high-spatial-resolution climate data for crop growing seasons in Sudan. The focus was on
wet season rainfall and dry season temperature. The specific objectives were (1) to compare
downscaled rainfall and temperature data between cumulus parameterization schemes
and (2) to determine cumulus parameterization schemes for specific growing seasons and
climatic zones.

2. Materials and Methods

2.1. Study Area

Sudan is one of the most water-scarce countries in the world. Based on the aridity
index [36], the Sudan can be divided into three aridity zones, hyper-arid, arid, and semi-
arid. These zones are all characterized by hot, wet summers and relatively cold, dry
winters. In general, northern Sudan receives less rainfall and experiences larger temperature
changes between seasons than southern Sudan. For example, Dongola (19.17◦ N, 30.48◦ E)
receives less than 15 mm of annual rainfall, and the range of monthly mean temperatures is
17.6–34.5 ◦C; the annual rainfall at Wad Medani (14.40◦ N, 33.48◦ E) is about 300 mm, and
the range of monthly mean temperatures is 23.6–33.1 ◦C; at Gedaref (14.03◦ N, 35.40◦ E),
the annual rainfall is about 600 mm, and the range of monthly mean temperatures is
25.9–32.7 ◦C. These sites are in the hyper-arid, arid, and semi-arid zones, respectively [37].
The topography of Sudan is relatively flat, except in the southwestern part (Figure 1).

 
Figure 1. The domain of the Weather Research and Forecasting downscaling experiment with

geographical locations of 24 meteorological stations in the hyper-arid, arid, and semi-arid zones

of Sudan.

2.2. Model Configuration

We used the WRF model version 4.2 (Advanced Research WRF). The BMJ scheme has
been commonly selected in WRF downscaling experiments in the Nile River basin and the
Eastern Nile basin [28,29]. The KFT scheme, the Tiedtke scheme [38], and the Grell–Freitas
scheme (GF) [39] perform well to some extent in the neighboring regions of Sudan, i.e., East
Africa [32,40] and West Africa [41]. However, to the best of our knowledge, the KFT, Tiedtke,
and GF are never tested in the study area. Therefore, the following schemes were selected to
evaluate the sensitivity of model outputs to cumulus parameterization: (a) BMJ [12], an ad-
justment type of the convection scheme introduced by Betts and Miller [42]; (b) KFT [33], an
improved mass-flux scheme of Kain and Fritsch [43] based on Fritsch and Chappell [44] for
a convective system of detrainment from clouds; (c) a modified Tiedtke (TDK) scheme [45],
a modification of the mass-flux scheme of Tiedtke [38] with respect to entrainment and
detrainment in cumulus convection; and (d) GF [39], a mass-flux scheme with the stochastic
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approach of Grell and Dévényi [11] based on Grell’s [46] original scheme. The other four
physics schemes selected for this study were the RRTMG, unified NOAH [47], YSU, and
WSM6 for shortwave and longwave radiation physics, land surface physics, planetary
boundary layer physics, and microphysics, respectively. These were chosen based on
recommendations found in previous studies of Northeast Africa [15,19,20,28,29,32].

2.3. Model Simulation

A set of experiments was run to test these cumulus parameterization schemes using
6-hourly data from the National Centers for Environmental Prediction (NCEP)-Climate
Forecast System Reanalysis (CFSR) at a horizontal resolution of 0.5◦ × 0.5◦ [48]. The
NCEP-CFSR dataset is available for the period 1979–2010 from the Research Data Archive
of Computational and Information Systems Laboratory of the National Center for Atmo-
spheric Research (ds093.0) (https://rda.ucar.edu) (accessed on 19 March 2021). In this
study, the downscaling experiments were carried out for 10 years from 2000 to 2010 by
running the model from May of each year to May of the following year. The NCEP-CFSR
data were downscaled to 10 km horizontal resolution for a single domain centered over
Sudan (Figure 1) using the WRF Preprocessing System version 4 consisting of the 10 min
surface topography data (slope category, terrain height, soil type, soil temperature) of
the United States Geological Survey and the land use data (albedo, vegetation fraction,
land use classification,) of the Moderate Resolution Imaging Spectroradiometer (MODIS)
(https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html) (ac-
cessed on 20 November 2020).

2.4. Model Validation

Daily rainfall data and maximum and minimum temperatures (TMAX and TMIN,
respectively) at 24 meteorological stations (Figure 1) were obtained from the Sudan Me-
teorological Authority. Annual, seasonal, and monthly averages of daily rainfall, TMAX,
and TMIN were used to evaluate model performance. For seasonal and monthly com-
parisons, wet season (June–September) and dry season (November–February) data were
used for rainfall and temperature, respectively. TMAX was also used for the comparisons
for the wet season in relation to heat stress to crops. Moreover, the number of rainy days
(NRD) (daily rainfall ≥ 1 mm) in the wet season and the frequency of hot days (FHD)
(daily TMAX > 35 ◦C) in the dry season was used as drought and extreme temperature
indices, respectively.

Model validation was performed using the data averaged over the meteorological sta-
tions located in each climatic zone. For statistical analysis of the downscaling experiments,
a Taylor Diagram was used to depict the similarity between the experimental outputs and
the corresponding observed data (10 years). The diagram showed the Pearson correlation
coefficient (R), standard deviation (SD), and root-mean-square error (RMSE) [49]. The sig-
nificance of the correlation coefficient was tested at p ≤ 0.05 (2-tailed). We normalized both
the SD of the simulated data and the RMSE to the SD of the observed data. The spatial
distributions of the simulated rainfall and temperature data were also compared with the
10-year average satellite-based reanalysis data, i.e., the Integrated Multi-Satellite Retrievals
for GPM (IMERG) [50] (https://gpm.nasa.gov) (accessed on 17 May 2021) for rainfall at a
horizontal resolution of 0.1◦ × 0.1◦ and the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA2) [51] (https://gmao.gsfc.nasa.gov) (accessed on
26 April 2021) for temperature at a horizontal resolution of 0.5◦ × 0.625◦. The IMERG
database has been developed since 2000, using the data collected with the TRMM/GPM
onboard Dual-frequency Precipitation Radar and Microwave Imager together with other
passive microwave radiometers such as GCOM-W1 AMSR2 and NOAA-20 ATMS. The
MERRA2 dataset (1980 to present) has been generated on a cubed-sphere grid with the
GEOS General Circulation Model.
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3. Results

3.1. Annual Rainfall and Temperature

Figure 2a shows the spatial distribution of annual rainfall. The simulated data and
the satellite-based data were comparable in the central to northern part of the study area.
The rainfall simulated with the BMJ scheme most closely agreed with the satellite-based
data (IMERG) (Figures 2a, S1a and S2a, Table 1). Use of the KFT and GF schemes resulted
in slight overestimates of rainfall in southern Sudan, and the rainfall simulated by the
TDK was low in northern Sudan. In southeastern Sudan, the KFT-simulated rainfall was
more-or-less in agreement with the satellite-based data. All four schemes produced results
that were very strongly correlated with the satellite-based data (R = 0.92 for BMJ, 0.96 for
KFT, 0.93 for TDK, 0.97 for GF). The normalized SD for the BMJ scheme was close to unity.
The BMJ scheme had the lowest RMSE, followed by the TDK and then the KFT scheme
(Table 1).

 

(a) 

 

(b) 

Figure 2. Cont.
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(c) 

≤

Figure 2. Spatial distributions of the 10-year average annual rainfall (mm) and maximum and

minimum temperatures (◦C) simulated with the Betts–Miller–Janjic (BMJ), improved Kain–Fritch

(KFT), modified Tiedtke (TDK), and Grell–Freitas (GF) schemes, and IMERG [50] observed rainfall

data and MERRA2 [51] observed temperature data in Sudan. (a) Rainfall. (b) Maximum temperature.

(c) Minimum temperature.

Table 1. The Pearson correlation coefficient (R), normalized standard deviation (SD), root-mean-

square error (RMSE) and normalized RMSE for spatial distributions of annual and seasonal rainfall,

maximum temperature (TMAX), and minimum temperature (TMIN). All correlation coefficients are

significant at p ≤ 0.01.

Annual Seasonal

Scheme Statistics Rainfall TMAX TMIN Rainfall TMAX TMIN

BMJ

R 0.92 0.76 0.88 0.91 0.93 0.94
Normalized SD 0.92 1.04 0.98 0.94 0.98 0.97

RMSE 113 mm 1.75 ◦C 2.81 ◦C 103 mm 1.80 ◦C 3.20 ◦C
Normalized RMSE 0.42 0.91 1.17 0.44 0.43 0.84

KFT

R 0.96 0.76 0.87 0.96 0.91 0.93
Normalized SD 1.53 0.98 0.98 1.46 0.71 0.84

RMSE 194 mm 1.59 ◦C 2.70 ◦C 141 mm 2.17 ◦C 1.91 ◦C
Normalized RMSE 0.72 0.83 1.13 0.61 0.52 1.24

TDK

R 0.93 0.76 0.85 0.92 0.94 0.94
Normalized SD 0.71 1.07 1.12 0.76 0.96 1.03

RMSE 160 mm 1.58 ◦C 2.67 ◦C 132 mm 1.54 ◦C 3.43 ◦C
Normalized RMSE 0.59 0.82 1.12 0.57 0.37 0.84

GF

R 0.97 0.76 0.88 0.97 0.93 0.94
Normalized SD 1.89 0.88 0.83 1.88 0.88 0.91

RMSE 336 mm 2.10 ◦C 2.72 ◦C 279 mm 1.84 ◦C 3.03 ◦C
Normalized RMSE 1.24 1.10 1.14 1.20 0.44 0.86

Figure 2b shows the spatial distribution of the annual TMAX (Figures S1b and S2b).
The distributions simulated with the BMJ, KFT, and TDK schemes were comparable with
the MERRA2 data, except in the northeastern corner of Sudan, whereas the GF reproduced
the low TMAX in the central to southern and central to eastern parts of the Sudan. All
four schemes simulated temperatures that were strongly correlated with the satellite-based
data, and the normalized SD was close to unity (Table 1). The RMSEs of the temperatures
simulated by the KFT and TDK were lower than the corresponding RMSEs of the BMJ
and GF. Like TMAX, the simulated TMIN was strongly correlated with the satellite-based
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data, and the normalized SD was close to unity (Table 1). However, the RMSE was higher
for TMIN than for TMAX in all four schemes. The simulated TMIN was higher than the
satellite-based TMIN over the study area (Figures 2c, S1c and S2c).

3.2. Wet Season Rainfall and Temperature

Figure 3a shows the spatial distribution of the wet season (June–September) rainfall
(Figure S3a). Like annual rainfall, the wet season rainfall simulated with the BMJ scheme
was highly consistent with the IMERG data. The wet season rainfall simulated by all four
schemes was very strongly correlated with the satellite-based rainfall (R = 0.91 for BMJ,
0.96 for KFT, 0.92 for TDK, 0.97 for GF). The RMSE of the wet season rainfall simulated
by the BMJ was the lowest among the schemes. The variance of the BMJ rainfall was low,
and its normalized SD was close to unity (Table 1). Figure 4 shows Taylor diagrams of
monthly and seasonal rainfall to allow comparisons between climatic zones. The seasonal
rainfall simulated by all the schemes was significantly correlated with observed seasonal
rainfall in the hyper-arid zone (R = 0.94 for BMJ, 0.85 for KFT, 0.93 for TDK, 0.96 for
GF). The simulated NRD also agreed with the observed data for TDK (R = 0.81) and GF
(R = 0.68) (Table 2). The simulated monthly rainfall was also in agreement with the observed
rainfall in June and July, and the GF-simulated rainfall was significantly correlated with the
observed rainfall in August (Figure 4). In all months, both the SD and RMSE were higher
for the GF-simulated rainfall than for the other schemes. In the arid zone, correlations
were high between the seasonal rainfall simulated with the BMJ and GF schemes and
the observed rainfall. The BMJ-simulated NRD was also consistent with the observed
data (R = 0.64), but no correlation was found between GF-simulated and observed NRDs
(Table 2). There were significant correlations between observed and simulated monthly
rainfall for all four schemes in July and September, except for the TDK in July, but there
were no analogous correlations in June and August (Figure 4). In general, the SD and RMSE
were lower for the BMJ- and TDK-simulated rainfall than for the KFT- and GF-simulated
rainfall. In the semi-arid zone, no correlations were found between simulated and observed
seasonal rainfall, but KFT-simulated monthly rainfall was significantly correlated with
observed rainfall in July and August. The BMJ- and GF-simulated rainfalls were consistent
with the observed rainfall in July. In addition, the TDK-simulated NRD was significantly
correlated with the observed data (R = 0.71) (Table 2). The SD and RMSE of the simulated
rainfall were relatively high in the semi-arid zone compared with the hyper-arid and arid
zones (Figure 4).

 

(a)  

Figure 3. Cont.
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(b) 

 

(c) 

Figure 3. Spatial distributions of the 10-year seasonal (June–September) rainfall (mm) and seasonal

(November–February) maximum and minimum temperatures (◦C) simulated with the Betts–Miller–

Janjic (BMJ), improved Kain–Fritch (KFT), modified Tiedtke (TDK), and Grell–Freitas (GF) schemes,

and IMERG [50]-observed rainfall data and MERRA2 [51]-observed temperature data in Sudan.

(a) Rainfall. (b) Maximum temperature. (c) Minimum temperature.

  
(a) (b) 

Figure 4. Cont.
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(c)  (d) 

 

 

(e)  

≥

≤

Figure 4. Normalized Taylor diagrams (obs: normalized standard deviation of observations) for

monthly and seasonal rainfall during the wet season (June–September) in the hyper-arid, arid, and

semi-arid zones of Sudan. BMJ, KFT, TDK, and GF are the Betts–Miller–Janjic, improved Kain–Fritch,

modified Tiedtke, and Grell–Freitas schemes, respectively. (a) June. (b) July. (c) August. (d) September.

(e) June–September.

Table 2. The Pearson correlation coefficient (R) for seasonal maximum temperature (TMAX) and the

number of rainy days (NRD) (daily rainfall ≥ 1 mm) in the wet season (June–September), and the

frequency of hot days (FHD) (daily TMAX > 35 ◦C) in the dry season (November–February). All

correlation coefficients are significant at p ≤ 0.05, and ns denotes no significance.

Wet Season Dry Season

Zone Scheme TMAX NRD FHD

Hyper-arid

BMJ 0.85 ns 0.82
KFT 0.81 ns 0.74
TDK 0.89 0.81 0.85
GF 0.87 0.68 0.80

Arid

BMJ 0.79 0.64 0.96
KFT 0.74 0.65 0.90
TDK 0.84 ns 0.91
GF 0.89 ns 0.92

Semi-arid

BMJ 0.69 ns 0.95
KFT 0.80 ns 0.88
TDK 0.71 0.71 0.94
GF 0.90 ns 0.87
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The seasonal TMAX simulated by all four schemes was very strongly correlated with
the observed data in the hyper-arid zone (R > 0.8) (Table 2). In the arid and semi-arid zones,
the simulated TMAX was also significantly correlated with the observed data.

3.3. Dry Season Maximum Temperature

Figure 3b shows the spatial distribution of the dry season (November–February)
TMAX (Figure S3b). The distributions simulated with the BMJ, TDK, and GF schemes
were comparable to that of the MERRA2 data. The KFT-simulated TMAX values were
relatively high, particularly in northwestern Sudan, and its RMSEs were higher than those
of the other schemes (Table 1). The seasonal TMAX values were more highly correlated
than the annual TMAX values with the MERRA2 data (R = 0.93 for BMJ, 0.91 for KFT,
0.94 for TDK, 0.93 for GF). The Taylor diagrams further showed that the simulated TMAX
agreed with the observed data, except for KFT, in all three zones (Figure 5). Similarly,
the FHDs simulated by all four schemes were strongly correlated with the observed data
in all three zones (Table 2). The normalized SDs for BMJ and TDK were close to unity.
The RMSEs were higher for the KFT and GF than for the BMJ and TDK schemes. The
simulated monthly TMAX was significantly correlated with the observed data, except for
the following schemes and months: KFT for December and January, TDK for November,
and GF for November and January in the hyper-arid zone; KFT for January and GF for
November and January in the arid zone; and BJM and TDK for November and KFT and GF
for January in the semi-arid zone.

  
(a)  (b)  

  
(c)  (d)  

Figure 5. Cont.
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(e)  

Figure 5. Normalized Taylor diagrams (obs: normalized standard deviation of observations) for

monthly and seasonal maximum temperature during the dry season (November–February) in the

hyper-arid, arid, and semi-arid zones of Sudan. BMJ, KFT, TDK, and GF are the Betts–Miller–Janjic,

improved Kain–Fritch, modified Tiedtke, and Grell–Freitas schemes, respectively. (a) November.

(b) December. (c) January. (d) February. (e) November–February.

3.4. Dry Season Minimum Temperature

Figure 3c shows the spatial distribution of the dry season TMIN (Figure S3c). Like
TMAX, the spatial distributions of the TMINs simulated with the BMJ, TDK, and GF
schemes were comparable to those of the MERRA2 data, but the TMINs simulated by the
KFT scheme were relatively high. The TMINs simulated by all four schemes were strongly
correlated with the reanalysis data (MERRA2) (R = 0.94 for BMJ, 0.93 for KFT, 0.94 for
TDK, 0.94 for GF), and the normalized SDs were near unity (Table 1). In contrast to the
TMAX values, the RMSEs were relatively high, except for KFT. The Taylor diagrams also
showed that the BMJ- and TDK-simulated seasonal TMINs were in agreement with the
observed data in all three zones (Figure 6). However, the GF-simulated TMINs were not
correlated with the observed data in the hyper-arid zone, and the KFT-simulated TMINs
were correlated with the observed data only in the arid zone. The RMSEs associated
with the seasonal TMIN data were relatively high compared to the RMSEs of the TMAX
data. The normalized SDs were close to unity in the arid zone but lower than unity in
the hyper-arid and semi-arid zones. The monthly TMINs simulated by all four schemes
were in agreement with the observed TMIN in February in all three zones, December in the
hyper-arid zone, and November in the arid zone. In addition, the TMINs simulated with
the following schemes and months were significantly correlated with the observed TMINs
in the arid and semi-arid zones: BMJ in December, TDK in November and December, and
GF in December and January.
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 6. Normalized Taylor diagrams (obs: normalized standard deviation of observations) for

monthly and seasonal minimum temperature during the dry season (November–February) in the

hyper-arid, arid, and semi-arid zones of Sudan. BMJ, KFT, TDK, and GF are the Betts–Miller–Janjic,

improved Kain–Fritch, modified Tiedtke, and Grell–Freitas schemes, respectively. (a) November.

(b) December. (c) January. (d) February. (e) November–February.
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4. Discussion

Our modeling experiments revealed that different cumulus parameterization schemes
of the WRF model led to different model performance for Sudan. The adjustment type
scheme (BMJ) performed better than the mass-flow type schemes (KFT, TDK, and GF)
(Figures 2a and 3a). This result was not consistent with the results of previous studies
in the Nile River basin [28] and the MENA [15], where the KF outperformed the BMJ.
This difference could be attributed to differences in landscapes as well as land cover
between these regions. In addition, the fact that the KFT outperformed the BMJ scheme in
southeastern Sudan indicates that mass-flux schemes could be used for downscaling over
regions of relatively high rainfall in the study area. In the case of the spatial distribution
of temperature, the model outputs of both annual and seasonal temperatures were less
sensitive to the cumulus parameterization option in the study area (Figures 2b,c and 3b,c).
This conclusion agrees with the results of previous studies of the Nile River basin [28] and
MENA [15].

Comparisons between climatic zones revealed that the model performance differed
between the cumulus parameterization schemes for wet season rainfall (Figure 4). The BMJ
outperformed the other schemes for wet season rainfall in the hyper-arid and arid zones. In
the semi-arid zone, all four schemes performed relatively poorly for seasonal rainfall, but
the mass-flow (KFT) scheme performed better for the main months of the growing season
(July and August). This result is consistent with the results of a previous study of cumulus
parameterization options for seasonal rainfall in East Africa [32]. That study considered
the same physics options as this study, and the results showed that mass-flow schemes (KF,
KFT, and GD) performed better than the adjustment-type scheme (BMJ). In the case of dry
season temperature, the BMJ and TDK schemes outperformed the KFT and GF schemes
for TMAX in all three zones (Figure 5). In the arid and semi-arid zones, the GF performed
better for TMIN during the growing season and its main months (December and January),
but the BMJ and TDK outperformed the GF for the seasonal TMIN in the hyper-arid zone
(Figure 6). This result is partly consistent with the results of a previous study in the Eastern
Nile basin, which considered different schemes of the two other physics options (CAM
for radiation and MYJ for planetary boundary layer). In that study, the BMJ outperformed
the KF and GD schemes [29]. These results indicate that the model outputs are sensitive
to the types of cumulus parameterization options, and the best option depends on the
other physics options considered. Previous studies of WRF downscaling for Northeast
Africa [28,29,32] have indicated that the best WRF configuration depends on the type of
climate and confirms that the best cumulus parameterization scheme is region-dependent
for both rainfall and temperature in the study area. The schemes that performed best for
downscaling rainfall during the wet season were the BJM for the hyper-arid and arid zones
and the KFT for the semi-arid zone. In the case of dry season temperature, the BMJ and
TDK should be used in all climatic zones, but the GF can be selected for TMIN in the arid
and semi-arid zones.

The sensitivity of the WRF model outputs to the choice of physics options has been
reported from Northeast Africa. For example, the WSM6 performs better than other mi-
crophysics schemes such as GODDARD, WSM3, and WSM5 [15,29], and NOAH performs
better than other land surface schemes such as NOAHMP, CLM, and RUC [20,28]. In the
case of the planetary boundary layer option, MYJ performs better than YSU over the Nile
River basin [28] and the Eastern Nile basin [29], whereas the latter performs better than
the former over MENA [15]. In the case of the radiation physics option, a set of DUDHIA
and RRTM performs better than CAM over the Nile River basin [28], whereas the latter
performs better than the former over the Eastern Nile basin [29]. The performance of the
radiation physics schemes (CAM and RRTMG) for temperature varies from location to
location and from season to season over MENA [19]. In this study, the other physics options
were fixed to test the cumulus parameterization options. Accordingly, further downscaling
experiments for the study area (Sudan) are recommended to evaluate the radiation physics
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and planetary boundary layer options in particular; for example, RRTMG and YSU can be
compared with CAM and MYJ, respectively.

5. Conclusions

This study evaluated cumulus parameterization options of the WRF model to deter-
mine the most robust configuration for a relatively small domain centered over Sudan.
The downscaling of the NCEP-CFSR data was sensitive to four schemes, i.e., BMJ, KFT,
TDK, and GF. This physics option should be carefully selected for generating high-spatial-
resolution climate data in the study area. The major production areas of summer crops lie
in the semi-arid zone, whereas irrigated wheat is cultivated mostly in the arid and hyper-
arid zones. As rainfall and temperature are determinants of the climatic conditions for
summer crops and irrigated wheat, respectively, the recommended schemes for cumulus
parameterization are therefore the KFT for wet season rainfall in the semi-arid zone, and
either the BMJ or TDK for the dry season temperature in the hyper-arid and arid zones,
except for the dry season TMIN in the arid zone, for which the GF is recommended. The
cumulus parameterization scheme thus needs to be selected separately for each climatic
zone in Sudan.

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/atmos13040572/s1, Figure S1. Spatial distributions of the differ-

ences between the 10-year average annual rainfall (mm) and maximum and minimum temperatures

(◦C) simulated with the Betts–Miller–Janjic (BMJ), improved Kain–Fritch (KFT), modified Tiedtke

(TDK), and Grell–Freitas (GF) schemes, and IMERG [50] observed rainfall data and MERRA2 [51]

observed temperature data in Sudan. The differences were calculated by subtracting the observed

data from the simulated data; Figure S2. Histograms of the 10-year average annual rainfall (mm) and

maximum and minimum temperatures (◦C) simulated with the Betts–Miller–Janjic (BMJ), improved

Kain–Fritch (KFT), modified Tiedtke (TDK), and Grell–Freitas (GF) schemes, and IMERG [50] ob-

served rainfall data and MERRA2 [51] observed temperature data in Sudan; Figure S3. Histograms of

the 10-year seasonal (June–September) rainfall (mm) and seasonal (November–February) maximum

and minimum temperatures (◦C) simulated with the Betts–Miller–Janjic (BMJ), improved Kain–Fritch

(KFT), modified Tiedtke (TDK), and Grell–Freitas (GF) schemes, and IMERG [50] observed rainfall

data and MERRA2 [51] observed temperature data in Sudan.
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